STRUCTURE ET SPECTRES DE VIBRATION DE COMPOSÉS ORGANO-MERCURIQUES

II. DIALLYLMERCURE, (CH₂=CH-CH₂)₂Hg

C. SOURISSEAU et B. PASQUIER

Laboratoire de Chimie Physique du C.N.R.S., 2, Rue Henri Dunant, 94-Thiais (France) (Reçu le 27 décembre 1971)

SUMMARY

Infrared and Raman spectra (4000-20 cm⁻¹) of diallylmercury, (CH₂=CH-CH₂)₂Hg, in the liquid and solid states are reported. Liquid phase spectra suggest a very low symmetry for this compound; the best agreement is obtained with the C_i group. A complete vibrational assignment is proposed.

RÉSUMÉ

Les spectres infrarouges et Raman du diallylmercure, $(CH_2=CH-CH_2)_2Hg$, à l'état liquide et à l'état cristallisé ont été étudiés entre 4000 et 20 cm⁻¹. Les résultats expérimentaux relatifs à l'état liquide montrent que la molécule de diallylmercure possède une faible symétrie, vraisemblablement celle du groupe C_i . Une attribution complète des modes normaux est proposée.

INTRODUCTION

A la suite de l'étude vibrationnelle des halogénures d'allylmercure¹, nous avons entrepris celle du diallylmercure. Ce travail, qui a pour but de préciser la structure de cette molécule, nous a obligés à compléter l'interprétation des spectres de vibration. En effet, les travaux antérieurs n'ont concerné que l'étude du liquide par spectrométrie infrarouge, jusqu'à 300 cm⁻¹. Gross² a proposé une attribution partielle des vibrations fondamentales; Mink et Pentin³ n'ont publié que les vibrations caractéristiques du groupement ($-CH_2-Hg-CH_2-$).

Nous avons effectué l'analyse des spectres infrarouges et Raman de 4000 à 20 cm^{-1} du diallylmercure à l'état liquide et à l'état cristallisé à -180° .

PARTIE EXPÉRIMENTALE

Le diallylmercure a été synthétisé, selon la méthode de Borisov et coll.⁴, à partir d'une solution éthérée de bromure d'allylmagnésium préparée sous argon et de bromure mercurique dissous dans le tétrahydrofuranne absolu. Ce composé,

TABLEAU 1

Liquide pur ^a			Cristal –	- 180° <i>Cª</i>	Attributions ^b	
R (cm ⁻¹)	IR (cm ⁻¹)	Type de symétrie dans C _i	R (cm ⁻¹)	IR (cm ⁻¹)		
		a _u	3210 f	3212 f	$2 \times \nu$ (C=C)	
3071 M	3071 TF	$A_{\mathbf{g}}, \widehat{A_{\mathbf{u}}}$	3070 M	3072 F 3067 TF	ν _e (CH ₂ =)	
3046 tf	3045 M	$A_{\mathbf{g}}, A_{\mathbf{u}}$	3046 tf	{ 3045 M 3039 M	ν (C=C) + δ (CH ₂)	
3016 f P	3014 M	$A_{\mathbf{r}}, A_{\mathbf{u}}$	3016 f	{ 3016 M 3008 M	ν(CH=)	
2987 F P	2986 F	A _s , A _u	2986 F	{ 2990 M 2983 F	v _s (CH ₂ =)	
2962 f P	2959 TF	<i>A</i> _g , <i>A</i> _u	2956 tf	{ 2959 TF } 2955 TF	v _s (CH ₂)	
2940 M	2939 M		2943 M	2940 M { 2920 M		
2906 F P	2904 TF	A _s , A _u	2908 F	(2906 F 2890 f	ν _s (CH ₂) ν(C=C)+δ(CH=)	
1617 TF P	1615 TF	A _s , A _u	{ 1616 F { 1607 TF	{ 1618 TF 1609 TF 1607 ép	v(C=C)	
1595 f	1594 ép	$a_{\mathbf{g}}, a_{\mathbf{u}}$	1595 tf	{ 1594 f 1588 M 1583 f	ν(C-C)+γ(CH=) (III)	
1556 tf	1554 M	a _g , a _u	1556 tf	{ 1559 M { 1550 f 1582 M	γ(CH=) (II)+γ (CH=) (III)	
	1476 M	a _s , a _u		1499 M	γ(CH=) (I) + ν(C−Hg−C)	
				{ 1456 tf { 1441 f	$t(CH_2) + \delta(C=C-C)$	
1420 f P	1421 M	A_{g}, A_{u}	1422 f	$\begin{cases} 1431 \text{ ep} \\ 1425 \text{ M} \\ 1419 \text{ F} \\ 1415 \text{ F} \end{cases}$	δ(CH ₂)	
1391 M P	1391 M	A _g , A _u	{ 1392 M { 1386 F	{ 1394 TF 1391 TF 1387 ép	δ(CH ₂ =)	
	1329 tf	a _g , a _u		1374 f 1361 tf	2×γ(CH=) (III)	
1295 F P	1293 M	A _s , A _u	{ 1297 F { 1288 F	1293 M 1293 M 1291 M 1288 M	δ(CH=)	
			1249 f	1253 tf	$r(CH_2) + v(C-Hg-C)$	

FRÉQUENCES INFRAROUGES (IR) ET RAMAN (R), DU DIALLYLMERCURE, $(CH_2=CH-CH_2)_2Hg$, À l'ÉTAT LIQUIDE PUR ET CRISTALLISÉ À -- 180°

Liquide pur ^a			Cristal -1	80° <i>C</i> ⁴	Attributions ^b
R (cm ⁻¹)	IR (cm ⁻¹)	Type de symétrie dans C _i	R (cm ⁻¹)	IR (cm ⁻¹)	
1192 M P	1188 TF	$A_{\mathbf{g}}, A_{\mathbf{u}}$	{1193 M {1187 M	<pre>{1197 F 1193 TF 1189 ép 1183 f</pre>	r(CH ₂ =)
{1099 ép {1074 TF P	{1098 M {1074 M	A_{g}, A_{u}	{ 1087 M 1069 F 1061 ép 1058 TF	$\begin{cases} 1098 \text{ TF} \\ 1085 \text{ TF} \\ 1070 \text{ F} \\ 1061 \text{ TF} \\ 1026 \text{ TF} \end{cases}$	w(CH2)
1030 f P	1030-F	A _g , A _u	{1036 f {1024 M	$\begin{cases} 1036 \text{ IF} \\ 1033 \text{ TF} \\ 1030 \text{ ép} \\ 1024 \text{ f} \end{cases}$	t(CH ₂)
988 f P	987 TF	<i>A</i> _s , <i>A</i> _u	{994 M 987 F	{ 1001 ép 994 F 988 TF 984 F	y(CH=) (I)
932 M P	931 F	$A_{\mathbf{g}_{\star}} A_{\mathrm{u}}$	{941 f 927 F	\[\begin{bmatrix 940 M \\ 933 F \\ 929 \end{bmatrix \text{pmatrix} \] \]	v(C–C)
877 M	912 tf 876 TF	A _g , A _u	{872 M {858 M	915 M 882 F 872 TF 861 TF	γ(CH=) (III)+δ(C-C-Hg) γ(CH=) (II)
798 tf	796 tf	$a_{\mathbf{g}}, a_{\mathbf{u}}$		< 851 ep	w(CH ² ₂) - δ(C=C-C)
756 M P	{773 ép {757 M	A _s , A _u	{769 f {751 M	764 f 758 tf 751 TF 744 TF 738 áp	r(CH2)
725 f P	718 f		722 M	715 f	ν(C–Hg–C) + δ(C–C–Hg)
674 MP	676 M	A _g , A _u	{685 м (678 F	688 TF 681 F	γ(CH=) (III)
594 tf P	596 tf	a _s , a _u		579 tf	δ (C=C-C) + δ (C-C-Hg)
494 tf	495 TF	Au	499 f {482 F	(501 TF (476 M	ν _a (C-HgC)
474 TF P	475 ép	A _s	(476 TF	(460 ép (395 TF	v _s (C-Hg-C)
384 TF P	387 M	$A_{\mathbf{g}}, A_{\mathbf{u}}$	387 TF	{388 TF (382 ép (259 f	δ(C=C-C)
230 M P	236 f	A _e A _e	251 M 240 M	249 M	δ _s (CC-Hg) δ _s (CCHg)

TABLEAU 1 (suite)

J. Organometal. Chem., 39 (1972)

(pour la suite voir la p. 68)

£	ο
Ο	ō

Liquide pur ^a			Cristal - 180°C ^a		Attributions ^b		
R (cm ⁻¹)	IR (cm ⁻¹)	Type de symétrie dans C _i	R (cm ⁻¹)	IR (cm ⁻¹)			
214 M P	220 tf	a _u a _g	221 M 160 M	229 f 223 tf 158 f {146 f	$\delta'(C-Hg-C) + \Gamma_s(C-C-C-Hg)$ $\delta'(C-Hg-C) + \Gamma_s(C-C-C-Hg)$ $\delta(C-Hg-C) + torsion$		
	142 t 97 F	A_{u} A_{u}	144 f 111 F	112 f	δ(C-Hg-C) δ(C-Hg-C)		
84 égo	77 F 43 ſ	Α _g Α _u Α _u	96 f 76 F 52 F 40 tf 32 F 24 F 12 F	81 f 47 M	Γ _s (C-C-C-Hg) Γ _s (C-C-C-Hg) Torsion Modes de réseau		

TABLEAU 1 (suite)

^e Les intensités sont indiquées suivant la légende: TF: très fort, F: fort, M: moyen, f: faible, tf: très faible, ép: épaulement; toutes les fréquences des raies Raman polarisées sont suivies d'une lettre P. ^b Les attributions des vibrations sont données avec les symboles: v: vibration de valence; δ : vibration de déformation plane; γ ou Γ : vibration de déformation hors du plan; w: balancement du CH₂ perpendiculairement à son plan (wagging); t: torsion (twisting); r: balancement du CH₂ dans son plan (rocking); a: antisymétrique; s: symétrique.

liquide incolore, distille à $51-55^{\circ}$ sous un vide de 10^{-1} mmHg; toxique et très corrosif, il doit être manipulé avec beaucoup de précautions; il peut être conservé sous gaz inerte et à basse température.

Les conditions expérimentales d'enregistrement des spectres ont déjà été décrites¹. En spectrométrie Raman, des enregistrements à différentes températures, entre +25 et -180° , ont été effectuées à l'aide du cryostat Cryocirc Coderg refroidi par un courant d'azote liquide; les mesures ont été répétées avec une bonne reproductibilité. A l'état cristallisé, les spectres infrarouges ont été obtenus en refroidissant des films liquides à la température de l'azote liquide ou en condensant la vapeur sur une face refroidie à -180° .

RÉSULTATS

Les spectres infrarouges et Raman, entre 3100 et 20 cm⁻¹, pour le liquide pur et pour l'état cristallisé à -180° , sont représentés sur la Fig. 1. Les fréquences, les intensités et les attributions des bandes et des raies observées sont rassemblées dans le Tableau 1.

A l'état liquide, les fréquences infrarouges entre 3100 et 300 cm⁻¹ sont identiques, aux erreurs expérimentales près à celles publiées par Gross^2 et en partie par Mink et Pentin³.

DISCUSSION

Entre 3100 et 350 cm⁻¹, les spectres du diallylmercure sont très semblables à

Fig. 1. Spectres infrarouges et Raman, entre 3100 et 20 cm⁻¹, du diallylmercure, $(CH_2=CH-CH_2)_2Hg$; a, spectre infrarouge du liquide pur; b, spectre infrarouge du cristal à -180° ; c, spectre Raman du liquide pur; d, spectre Raman du cristal à -180° .

ceux des halogénures d'allylmercure¹ : les attributions des modes normaux des groupements allyliques en découlent de façon immédiate. Les fréquences de ces vibrations pour les halogénures d'allylmercure et le diallylmercure sont rassemblées dans le Tableau 2.

Cependant le problème de la conformation de la molécule de diallylmercure subsiste. On sait que le nombre, l'état de polarisation et l'intensité des bandes infrarouges et des raies Raman sont des critères qui, à l'aide des règles de sélection, permettent d'atteindre le groupe de symétrie auquel appartient une molécule.

Nous essaierons donc de déterminer la structure de la molécule de diallylmercure à l'état liquide, puis à l'état cristallisé. Nous préciserons ensuite l'attribution de toutes les vibrations fondamentales.

(1) Symétrie et structure du diallylmercure

Nous considérerons d'abord la molécule de diallylmercure, supposée isolée et rechercherons tous les groupes de symétrie possibles. Nous comparerons ensuite les prévisions théoriques et les résultats expérimentaux obtenus à l'état liquide où on admet que les interactions moléculaires sont faibles. Enfin, à partir des spectres enregistrés à -180° , quelques hypothèses sur la structure cristalline du diallylmercure seront formulées.

TABLEAU 2

C₃H₅HgCl	C₃H₅HgBr	C ₃ H ₅ HgI	$(C_3H_5)_2Hg$	Attributions
3080	3080	3082	3071	v _a (CH ₂ =)
3031	3019	3020	3014	v(CH=)
2995	3003	3001	2986	$v_s(CH_2=)$
2953	2970	2962	2959	$\nu_{1}(CH_{2})$
2933	2920	2929	2904	$v_{s}(CH_{2})$
1627	1626	1623	1615	v(C=C)
1430	1438	1428	1421	$\delta(CH_2)$
1400	1397	1396	1391	$\delta(CH_2=)$
1300	1298	1297	1293	$\delta(CH=)$
1182	1187	1188	1188	r(CH2=)
1125	1113	1103	{1098 {1074	w(CH [*] ₂)
1046	1048	1036	1030	t(CH2)
986	989	986	987	γ(CH=) (I)
936	935	933	931	v(C-C)
901	900	901	876	γ(CH=) (II)
774	769	768	{773 {757	r(CH₂)
688	683	682	676	γ(CH≕) (III)
506	500	492	1495 475	ν(C-Hg)
385	388	384	387	δ(C=CC)

HALOGÉNURES D'ALLYLMERCURE ET DIALLYLMERCURE: FRÉQUENCES (en cm⁻¹) DES VIBRATIONS FONDAMENTALES DU MOTIF ALLYLIQUE ET DES VIBRATIONS DE VALENCE C-Hg

^a Les abréviations utilisées pour la description des vibrations sont décrites dans la légende du Tableau 1.

Conformation de la molécule isolée

Par analogie avec d'autres composés organomercuriques^{5,6}, on admet que le squelette C¹-Hg-C^{1'} est linéaire (Fig. 2). Par rapport à ce squelette les groupements allyliques peuvent être en rotation interne libre comme cela a été démontré avec le diméthylmercure^{7,8} ou avec le diéthylmercure⁹; dans ce cas, la classification des vibrations doit être effectuée dans un groupe isomorphe du groupe $C_{2h}^{10,11}$. Dans le cas contraire, trois conformations privilégiées peuvent exister : "cisoïde", "transoïde" et "intermédiaire" (Fig. 2). De plus, par rotation autour des liaisons C¹-C² et C^{1'}-C^{2'}

Fig. 2. Conformations possibles de la molécule de diallylmercure, $C^{3}H_{2}=C^{2}H-C^{1}H_{2}-Hg-C^{1'}H_{2}-C^{2'}H\approx C^{3'}H_{2}$ vis à vis du squelette linéaire $C^{1}-Hg-C^{1'}$; a, position "cisoïde" des deux groupements allyliques; b, position "transoïde"; c, position "intermédiaire" (0° < φ < 180°).

TABLEAU 3

Positions des motifs allyliques	Positions des motifs vinyliques						
vis a vis au squelette C'-Hg-C'	cis	cis		trans		gauches	
	G	Γ^i	G	<u>Γ</u> ⁱ	G	Γ^i	
Cisoīde ⁶	C _{2v}	$ \begin{cases} 15 A_1 \\ 8 A_2 \\ 14 B_1 \\ 8 P \end{cases} $	C _{2v}	$ \left\{\begin{array}{c} 15 A_1 \\ 8 A_2 \\ 14 B_1 \\ 9 P \end{array}\right. $	C ₂ C ₄	{23 A {22 B {23 A' {23 A'	
Transoīde	C _{2k}	$\begin{cases} 14 A_{g} \\ 7 B_{g} \\ 9 A_{u} \\ 15 B \end{cases}$	C ₂₁	$\begin{cases} 14 A_{g} \\ 7 B_{g} \\ 9 A_{u} \\ 15 B \end{cases}$	C₂ Ci	$\begin{cases} 22 & A \\ 23 & A \\ 22 & B \\ 121 & A_{a} \\ 24 & A \end{cases}$	
Intermédiaire ^d	<i>C</i> ₂	$\begin{cases} 23 \ A \\ 22 \ B \end{cases}$	<i>C</i> ₂	$\begin{cases} 23 \ A \\ 22 \ B \end{cases}$	C ₂ C ₁	$\begin{cases} 23 \ A \\ 22 \ B \\ 45 \ A \end{cases}$	

GROUPES DE SYMÉTRIE DES CONFIGURATIONS POSSIBLES DE LA MOLÉCULE DE DIALLYLMERCURE⁴ ET REPRÉSENTATIONS Γ CORRESPONDANTES

^a Le squelette carboné de la molécule est ainsi numéroté: $C^3=C^2-C^1-Hg-C^1-C^2=C^3$. ^b En positions cisoïde gauches, l'axe d'ordre 2 du groupe C_2 est contenu dans le plan $C^2-C^1-Hg-C^{1'}-C^{2'}$ et le plan de symétrie σ_s du groupe C_s est perpendiculaire au squelette $C^1-Hg-C^{1'}-C^{2'}$. ^c En positions transoïde gauches, l'axe d'ordre 2 du groupe C_2 est perpendiculaire au plan $C^2-C^1-Hg-C^{1'}-C^{2'}$. ^d En positions intermédiaires, l'axe d'ordre 2 des groupes C_2 est contenu dans le plan bissecteur de l'angle dièdre φ (Fig. 2).

le motifs vinyliques peuvent se placer en positions cis, trans et gauches par rapport au mercure. Si on admet que les deux groupements vinyliques ont des positions équivalentes, les conformations qui en découlent, appartiennent, comme le montre le Tableau 3, aux groupes de symétrie C_{2v} , C_{2h} , C_2 , C_s , C_i et C_1 . Les dénombrements des vibrations fondamentales à l'intérieur de ces six groupes de symétrie sont également rassemblés dans le Tableau 3.

Expérimentalement, les spectres Raman du diallylmercure, enregistrés à différentes températures ne manifestent ni de disparitions, ni de modifications d'intensité des raies. Un équilibre entre des isomères de rotation n'est donc pas mis en évidence. Ceci est conforme soit à l'hypothèse d'une rotation interne libre, soit à l'existence d'une seule conformation privilégiée. Les spectres Raman du liquide pur présentent dix huit raies, nettement polarisées, attribuables à des vibrations fondamentales alors qu'avec les groupes de symétrie C_{2h} et C_{2v} on dénombre quatorze vibrations de type A_g et quinze vibrations de type A_1 ; les propositions d'une rotation libre et d'une conformation appartenant aux groups C_{2h} ou C_{2v} doivent dont être rejetées.

Il faut alors envisager l'hypothèse d'une conformation privilégiée pouvant appartenir à l'un des groupes de symétrie, C_2 , C_s , C_i et C_1 , pour lesquels le nombre de raies attendues polarisées est supérieur à dix huit. Bien qu'on ne dispose pas de critère certain pour faire un choix entre ces groupes, on peut faire les remarques suivantes.

Entre 3100 et 500 cm⁻¹, domaine de dix sept vibrations fondamentales du groupment allylique (Tableau 1), on attend pour chaque mode normal un mouve-

ment en phase et un mouvement en opposition de phase avec des règles de sélection différentes suivant l'élément de symétrie que possède la molécule. À deux exceptions près, on n'observe pas de dédoublement des bandes et des raies et il y a coincidence des fréquences infrarouges et Raman. Le couplage des mouvements internes des deux motifs allyliques est donc faible, ce qui s'explique sans doute par la masse élevée de l'atome de mercure.

En dessous de 500 cm⁻¹, les spectres présentent une exclusion des activités infrarouges et Raman pour toutes les vibrations de squelette faisant intervenir le mercure. En outre, le nombre de bandes ou de raies observées est nettement inférieur aux nombres attendus avec les groupes C_2 , C_s et C_1 mais correspond à une unité près au dénombrement avec le groupe C_i . On verra d'ailleurs dans l'analyse vibrationnelle que deux combinaisons rendent compte de la bande d'absorption et de la raie Raman supplémentaires.

En conclusion, on peut dire que la symétrie moléculaire du diallylmercure isolé est faible, certainement inférieure à celle des groupes C_{2v} ou C_{2h} , tandis que l'hypothèse d'un groupe de symétrie C_i est cohérente avec les résultats expérimentaux. A l'état liquide, la molécule de diallylmercure possède donc très probablement une conformation "transoïde" (Fig. 2) avec les groupements vinyliques en position gauche par rapport au mercure. Avec les halogénures d'allylmercure¹, nous avions également conclu à une configuration gauche.

Toutefois, la molécule n'est pas rigoureusement isolée dans le liquide pur car, à la bande d'absorption très forte attribuée à la vibration $v_a(C-Hg-C)$ correspond une raie Raman de très faible intensité et à la raie très intense assignée à la vibration $v_s(C-Hg-C)$ correspond un épaulement sur le spectre infrarouge (Tableau 1): cet épaulement semble disparaître sur le spectre du diallylmercure en solution à 1 mole/l dans le sulfure de carbone : ces levées d'interdiction s'expliquent par des effets intermoléculaires non négligeables dans le liquide pur².

État solide

Le passage de l'état liquide à l'état cristallisé entraîne des faibles perturbations sur les fréquences de l'ensemble des spectres : ce fait dénote que le cristal est de type moléculaire et suggère que la déformation subie par la molécule de diallylmercure dans le cristal est faible. Cependant, les spectres enregistrés à -180° ne présentent plus l'exclusion des activités infrarouges et Raman observée en dessous de 500 cm⁻¹ à l'état liquide; les molécules semblent donc être localisées dans la maille sur des sites de symétrie C_1 et les deux groupements allyliques de la molécule ne sont pas crystallographiquement équivalents. Les vibrations propres aux motifs allyliques donnent lieu à trois, quatre ou même cinq composantes. Ceci laisse supposer en outre l'existence de plus de deux molécules par maille de Bravais.

(2) Analyse des spectres

Région spectrale 3100–350 cm^{-1}

L'ensemble des résultats, relatifs à ce domaine spectral, est rassemblé dans les Tableaux 1 et 2.

Par rapport aux halogénures d'allyle¹³, les fréquences des vibrations de valence C-H du diallylmercure diminuent de 20 à 50 cm⁻¹. Mink et Pentin¹⁴ avaient ob-

servé le même phénomène entre les halogénures de vinyle et le divinylmercure. Par ailleurs, pour le diallylmercure à l'état liquide, Mink et Pentin³ avaient assigné deux bandes d'absorption à la vibration $t(CH_2)$ que nous préférons attribuer à la vibration $w(CH_2)$ et deux autres bandes à la vibration $r(CH_2)$. Pour chaque doublet, nous observons la raie Raman intense à la même fréquence que la plus forte absorption infrarouge. Dans l'hypothèse du groupe de symétrie C_i , qui permet d'expliquer l'ensemble des spectres infrarouges et Raman, nous ne pouvons donc pas attribuer ces activités uniquement à un effet de couplage des vibrations méthyléniques à l'intérieur d'une molécule de diallylmercure; mais il semble que les combinaisons $\delta_s(C-C-Hg)$ $(A_g) + \gamma(CH=)$ (II) (A_u) et $\delta_s(C=C-C)$ $(A_g) + \delta_a(C=C-C)$ (A_u) rendent compte de l'activité infrarouge des bandes à fréquences supérieures dans chaque doublet.

Dans l'ensemble, nos attributions (Tableau 2), proches de celles proposées par Mink et Pentin³, sont très différentes de celles publiées par Gross².

Région spectrale 350–20 cm^{-1}

On attend dans ce domaine spectral, les vibrations de déformation antisymétrique (δ_a) et symétrique (δ_s) du squelette C-C-Hg, puis les deux vibrations de déformation (δ et δ') du motif linéaire C-Hg-C et enfin trois vibrations de déformation de l'ensemble de la molécule que nous appellerons Γ_a (C-C-C-Hg), Γ_s (C-C-C-Hg) et torsion.

Dans l'hypothèse du groupe de symétrie C_i , qui a été retenue pour la molécule isolée, ces vibrations appartiennent respectivement aux classes A_u , A_g , A_u , A_u , A_u , A_g et A_u (Tableau 1). La vibration δ (C-C-Hg) est située sur les spectres des halogénures d'allylmercure¹ vers 230 cm⁻¹. De plus, par analogie avec les résultats obtenus avec le diéthylmercure³, les vibrations δ' (C-Hg-C) et δ (C-Hg-C) sont attendues vers 130 cm⁻¹ et 90 cm⁻¹. Enfin, les trois dernières vibrations fondamentales sont attendues à des fréquences plus basses.

Nous observons sur les spectres du diallylmercure à l'état liquide six bandes d'absorption à 236, 220, 142, 97, 77 et 43 cm⁻¹ et trois raies Raman à 230, 214 et 84 cm⁻¹. Aussi on peut situer les vibrations $\delta_a(C-C-Hg) (A_u)$ et $\delta_s(C-C-Hg) (A_g)$ à 236 et 230 cm⁻¹, les vibrations $\delta'(C-Hg-C) (A_u)$ et $\delta(C-Hg-C) (A_u)$ à 142 et 97 cm⁻¹, les déformations $\Gamma_a(C-C-C-Hg) (A_u)$ et $\Gamma_s(C-C-C-Hg) (A_g)$ à 77 et 84 cm⁻¹ et enfin la torsion (A_u) à 43 cm⁻¹. Cette attribution respecte l'ordre des fréquences attendu et les règles de sélection du groupe C_i . Enfin, la raie Raman polarisée observée à 214 cm⁻¹ et la bande d'absorption très faible à 220 cm⁻¹ s'expliquent par deux combinaisons (Tableau 1); sur les spectres de l'état cristallisé, les fréquences de ces combinaisons respectent bien les variations en fréquence des vibrations fondamentales dont elles sont issues.

CONCLUSION

L'interprétation complète des spectres infrarouges et Raman du diallylmercure montre que la molécule isolée possède une structure "transoïde" de symétrie C_i . L'absence d'une rotation interne libre dans cette molécule est sans doute dûe à une interaction entre les électrons π du groupement vinylique et l'atome de mercure: cette interaction serait responsable de l'abaissement de fréquence des vibrations de valence v(C=C) et v(C-H); cet effet est plus important dans le diallylmercure que dans

les halogénures d'allylmercure. Enfin, nos résultats confirment la nature covalente des liasons C-Hg dans ce composé. Cependant les valeurs des fréquences des vibrations de valence C-Hg laissent supposer, en première approximation, que la constante de force principale F(C-Hg) est légèrement supérieure dans les halogénures d'allylmercure que dans le diallylmercure.

REMERCIEMENTS

Nous sommes reconnaissants à Monsieur J. Guillermet pour les nombreuses discussions dont il nous a fait bénéficier. Nous remercions Mademoiselle M. L. Josien et Monsieur A. Novak d'avoir bien voulu nous apporter leurs suggestions.

APPENDICE

De nombreuses bandes d'absorption d'intensité faible, non mentionnées dans le Tableau 1, ont été observées entre 2850 et 1650 cm⁻¹. Elles sont attribuées aux harmoniques ou combinaisons suivantes: $2 \times \delta(CH_2)$, $\delta(CH_2) + \delta(CH_2=)$, $2 \times \delta(CH_2=)$, $v(C=C) + t(CH_2)$, $v(C=C) + r(CH_2)$, v(C=C) + v(C-C), $\delta(CH_2=) + t(CH_2)$, $\delta(CH_2=) + \gamma(CH=)$ (II), $2 \times t(CH_2)$, $w(CH_2) + v(C-C)$, $r(CH_2=) + \gamma(CH=)$ (I), $2 \times \gamma$ -(CH=) (I), $2 \times v(C-C)$, $2 \times \gamma(CH=)$ (II) et $\gamma(CH=)$ (I) $+ \gamma(CH=)$ (III). Les bandes correspondantes sont relevées sur le spectre infrarouge du liquide pur aux fréquences suivantes: 2846, 2804, 2772, 2698, 2642, 2534, 2486, 2263, 2163, 2116, 2014, 1966, 1860, 1761 et 1663 cm⁻¹. Nous retrouvons ces vibrations sur le spectre du cristal à -180° et, en particulier, certaines bandes présentent plusieurs composantes: $2 \times \delta(CH_2)$ à 2847 et 2832 cm⁻¹, $2 \times t(CH_2)$ à 2147, 2142 et 2139 cm⁻¹, $r(CH_2=) + \gamma(CH=)$ (I) à 2017 et 1997 cm⁻¹, $2 \times \gamma(CH=)$ (II) à 1749, 1740, 1729 et 1725 cm⁻¹, enfin, $\gamma(CH=)$ (I) $+ \gamma(CH=)$ (III) à 1689 et 1674 cm⁻¹.

BIBLIOGRAPHIE

- 1 C. Sourisseau et B. Pasquier, J. Organometal. Chem., 39 (1972) 51.
- 2 B. Gross, Thèse de doctorat d'état, Paris, 1967.
- 3 J. Mink et Yu. A. Pentin, J. Organometal. Chem., 23 (1970) 293.
- 4 A. E. Borisov, I. S. Savel'eva et S. R. Serdynk, Bull. Acad. Sci. USSSR, 5 (1965) 996.
- 5 K. Suryanarayana Rao, B. P. Stoicheff et R. Turner, Can. J. Phys., 38 (1960) 1516.
- 6 M. Mathew et N. R. Kunchur, Can. J. Chem., 48 (1970) 429.
- 7 D. R. J. Boyd, H. N. Thomson et R. L. Williams, Disc. Faraday Soc., 9 (1950) 154.
- 8 J. L. Bribes et R. Gauffres, J. Chim. Phys., 67 (1970) 1168.
- 9 J. L. Bribes et R. Gauffres, Spectrochim. Acta, 27A (1971) 2133.
- 10 H. G. Longuet-Higgins, Mol. Phys., 6 (1966) 445.
- 11 J. Guillermet, Thèse de doctorat d'état, Paris, 1970.
- 12 H. E. Ziegler et J. D. Roberts, J. Org. Chem., 34 (1969) 2826.
- 13 C. Sourisseau et B. Pasquier, J. Mol. Struct., 12 (1972) 1.
- 14 J. Mink et Yu. A. Pentin, Chim. Acad. Sci. Hung., 66 (1970) 277.